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Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models
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The response of spherical two-spin interaction models, the spherical ferrontagfidi and the spherical
Sherrington-Kirkpatricks-SK) model, is calculated for the protocol of the so-called nonresonant hole burning
(NHB) experiment for temperatures below the respective critical temperatures. It is shown that it is possible to
select dynamic features in the out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic
heterogeneities. The behavior of the s-SK model and the s-FM model in three dimensions is very similar,
showing dynamic heterogeneities in the long-time behavior, i.e., in the aging regime. The appearance of
dynamic heterogeneities in the s-SK model explicitly demonstrates that these are not necessarily related to
spatial heterogeneities. For the s-FM model, it is shown that the nature of the dynamic heterogeneities changes
as a function of dimensionality. With the increasing dimension, the frequency selectivity of the NHB dimin-
ishes and the dynamics in the mean-field limit of the s-FM model becomes homogeneous.
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[. INTRODUCTION technique[12], which allows us to extract a length scale via
monitoring the spin diffusion. Originally, this technique has
Nonexponential relaxation behavior is found to be rathelbeen applied to a polymeric liquid, and later on the length
common when dealing with disordered materials such ascale of the dynamic heterogeneities has been extracted for
glasses, spin glasses, disordered crystals, or prgt&]ngn low-molecular glass-forming systenid3,14. The corre-
the last decade, particular attention has been payed to ttsponding length scales have been found to be of the order of
guestion to which extent the relaxation is to be viewed agl, ... ,4 nm.
dynamic heterogeneouf?]. Different experimental tech- Another experimental technique allowing to monitor dy-
niques have been invented in order to investigate the detailegamic heterogeneities is provided by the nonresonant spec-
nature of the relaxation particularly of amorphous systemsral hole burning(NHB) experiment[15]. This method is
[3—6]. These techniques allow us to specifically select a slowhased on a pump-wait-probe field sequence with a large
subensemble and afterwards monitor its relaxation. Variougymp field amplitude beyond the linear response regime.

applications of these techniques have shown that the primar-yhough originally applied to supercooled liquifs], NHB

response in amorphous polymers and supercooled liquids |§ the meantime has been used to investigate the relaxation
to be viewed as heterogeneous m_the sense that it is possi ¢ several materials, including disordered crystaislaxor
to select slow subensembles relaxing at smaller rates than tl?g

average. Throughout this paper, | use the definition given in |;?Seelgitgricilglﬂh;O;_Cﬁzgtlijgzno% l\gllll—?ésti%sgblsgglespigss
Ref.[7] according to which a system will be called dynamic 9 ' bp 9

heterogeneous if it is possible to select dynamically distin—mOdeI has been presentgD]. The interpretation of the ob-

guishable(slow and/or fastcontributions to a relaxation. tained results has been guided mainly by the fact that via the

In addition, it has been found that after a certain reequili-2PPlication of a large amplitude ac field of frequeriey the

bration time, the relaxation properties of the selected suberf@MPle absorbs energy of an amount proportional to the
semble return to those of the bul8,9]. Therefore, these iMmaginary part of the susceptibility evaluated at the pump
experiments indicate that the response can be described adrgauency() [21]. In case of a homogeneously broadened
superposition of exponentially decaying entities with differ- response, one does not expect that it is possible to modify the
ent relaxation rates. The various relaxation rates, howeveresponse in a frequency selective way. By contrast, such a
are not static quantities but apparently fluctuate in time. Dif-goal could be achieved if the response is given by a super-
ferent interpretations have been provided for this behavioposition of differently fast relaxing entitiegheterogeneous
[10,11]. The NMR technique$8,9] have the advantage of a scenarig. This is because, in this case energy absorbtion
simple interpretation in terms of equilibrium 4-time correla- should be largest for those subensembles with a relaxation
tion functions, but are restricted to a rather narrow temperatime on the scale of the inverse pump frequency. This intui-
ture regime and to certain materials. The optical deep bleactive picture is confirmed in the framework of a response
technique[4] has the advantage that it can be applied in aheory for NHB for the particular case of stochastic dipole
wider temperature range with the shortcoming that up to noweorientations, which | have developed recehfg].

it has not been interpreted in terms of equilibrium correlation In the quoted experiments, it has always been found that a
functions. At this point, it is important to note that these frequency selective modification of the response indeed is
experimental methods monitor molecular reorientations angossible. Regarding the reequilibration of this modification,
therefore arenot able to address the question ggatial as- however, the results differ not only with respect to the fre-
pectsof the dynamic heterogeneities. The only exception isquency dependence but also regarding the time scale of the
provided by a new variant of the four-dimensional-NMR recovery. For the latter a time scale longer than the inverse
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burn frequency has been observed in the case of the relaxaddition, the spin variables are subject to the spherical con-
ferroelectricq 17]. straint2;s?=N. The Langevin equations governing the dy-

As long as one is concerned with supercooled liquids, on@amics of the model read as
can safely consider the system to benimetastablgequilib-
rium prior to the NHB field sequence. This, however, is not
necessarily true for the relaxor materials or the spin glasses. si(H) =2 Juese(t) +hi—z(t)si(t) + &(1), 2)

In particular, it was argued in Reff23] that the results ob- k

tained for the solvable-spin-glass mod€l20] are mainly to

be interpreted in terms of out-of-equilibrium effects. In equi- wherez(t) is the Lagrange multiplier enforcing the spherical
librium, the p=3-model studied shows an exponential relax-constraint and;(t) is a é-correlated Gaussian white noise.
ation at long times. Therefore, according to what was said hese equations have been solved analytically by Cuglian-
above, one does not expect to be able to select a subefiolo and DeattCD) [25] in two papers. The dynamical prop-
semble in a frequency-dependent way in the equilibrated vegerties of the s-FM model are discussed in R&f]. Further
sion of the model. It has to be mentioned here that dynamighformation regarding the correspondence between the two
heterogeneities as monitored by NHB have also been opnodels can be found in Re[f28]. Here, | briefly summarize
served in Monte Carlo simulations on an equilibratedthe results relevant in the present context.
Sherrington-Kirkpatrick mean-field spin-glass modeH]. Of particular importance are the violations of the
These calculations explicitly demonstrate that from the obfluctuation-dissipation theorer#DT), which relates the re-
servation of dynamic heterogeneities, one cannot concludgPonse function to the time derivative of the two-time corre-
on the existence of spatial heterogeneities. Also, this findindation function,

appears to be independent of whether the system was in ther-

mal equilibrium before the application of the pump field. 1 .dC(7)

In this paper, | consider the application of the NHB field R(7)=— T4
sequence to the spherical Sherrington-KirkpatrickSK) T
model, i.e., thep-spin model withp=2, and the spherical
ferromagnets-FM) in an arbitrary dimension. The Langevin
dynamics for these models has been solved analytif28y
Additionally, the s-FM model is equivalent to th®(N)
model in the limit of largeN and therefore is a typical model
for domain-coarsening procesq4es$]. X(t,t,) dC(t,ty)

| will solely consider a thermal history protocol in which R(t.ty) = T g,
the system is quenched to a temperature below the critical
temperaturel; from infinite temperature prior to the experi- the limiting long-time behaviorX.., of which is known to
ment. The behavior at and aboVg will be investigated in a  vanish for domain-coarsening mod¢B9]. Here,t,, denotes
forthcoming publication. Therefore, all observed effects arahe time that has elapsed after a quench to the working tem-
intimately related to the out-of-equilibrium dynamics of the perature prior to the measurement. Also for the models con-
model. This is because, the system never reaches equilibriugidered in the present paper, one Xas=0 [27]. Thus, con-
in this temperature regime. The outline of the paper is agerning this measure of typical distances from equilibrium,
follows. In the following section, | will briefly recall the the domain-coarsening models in finite dimension do not
dynamic features of the models and calculate the response &how any differences to the mean-field s-SK model.
the NHB field sequence in second order regarding the pump- The response of the system, Ry(t,t")
field amplitude and linearly in the small step field. In Sec. = xN¢s;(t)£,(t"))/(2NT), in the presence of a fieli(t) can
IIl, the results of the calculations are presented and dispe gptained in the same way as calculated by CD for the zero
cussed. The paper closes with some conclusions in Sec. I\Mie|d case. As shown by Berthiet al. [31], this yields

3

In particular, it has proven extremely useful in out-of-
equilibrium situations to define the so-called fluctuation-
dissipation ratioX(t,t,,) via [29]

4

II. NHB IN SPHERICAL TWO-SPIN

W (t') [t—t’
INTERACTION MODELS "= —t/ h -
| S | Ru(t.t) = 0(t=t") s g( 5 ) ()
The spherical models under consideration are defined by
the Hamiltonian where the functiorg(t) is defined by
1 = — d -
H=— 5 ;k Jiksisk_Zi his; (1) g(t)=[exp(—4t)ly(4t)]° for s-FM model,
i - - 1,(4t
where in the case of s-SK model, thg are chosen at ran g(t)=exp(— 4t) 1(4t) for 5-SK model, ©®)

dom from a Gaussian probability distribution with zero mean 2t
and variancer=1/N, and are restricted to a ferromagnetic
couplingJ (to be set to unity in the followingfor the s-FM  with 1,(x) denoting the generalized Bessel function and

model on a simple hypercubic lattice ohdimensions. In  W,(t) is the solution of
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Wi(H)?=g(t)+ ZTJthWh( 7)%g(t—17)
0
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+f dtlJ dtah(ty)h(ty) Wh(ty) Wh(t2) [
0 0 10° L
t1+t2>
Xg(t— , @ o b
7 102 |
— 5 B
which has its origin in the normalization of the equal-time .._._3 10°® 3
correlation,C(t,t)=1, i.e., the spherical constraint. 0™ 2
+ 14 |
. e 10 F
A. Zero field response E 10" B
Before | turn to the calculation of the response following 107 5
the NHB pulse sequence, it is appropriate to summarize the 10‘: .
known results for the response and the correlation in zero 10,F
field, for a more detailed discussion see RE®S,27,29. In 1844{ X .
zero field, Eq.(7) simplifies to the following Volterra equa- 107E IR 774 3
tion: 10*Ed=7 R 3
107 RRLY
"EPET T AT AT BT BArT| BT BT B! B i
t 1 -1 1 1 1 3 1 5 1 7
W(t)zzg(t)+2Tf d7W(7)2g(t— 7). ®) 0 0 0 0 0
0

T
For the s-SK model, this equation has been solved by CD for
random initial conditions(i.e., a quench froml=c at t
=0). No simple analytical solution exists for the s-FM
model. However, fot>1, it can be showi25,27,2§ that
for T<T,,

FIG. 1. The response functid®(r+t,,,t,,) for the s-FM model
in the ferromagnetic phas@<T,, for t,,=10%,10°,10*,10° (from

upper to lowest ling Upper panel,d=3, middle panel;d=5,

lower paneld=7.

given for the s-FM model. The only differences between the
s-FM model ind=3 and the s-SK model stem from the

1
W(t)?=————0at). (9)  different prefactors in Eq(10). In particular, it is evident
(1=T/Te) from Eq.(11) that the temperature is an irrelevant variable in
. . S the whole low-temperature phase. Two time-sectors are to be
Here, the asymptotic behavior of tiggt) is given by distinguished.

(1) For short timesr such thatr<t,—the so-called sta-

as(t) = (87t) =92 for s-FM, tionary regime—one has=1 and accordingly

Oas(t)=(327) Y4732 for s-SK. (10) R(7+ty, ty)=R(7)=0(7/2) 7<t,. (12)

The critical temperatures are given By=1 for the s-SK  In particular, in this stationary regime, the FDT, E®),
model andT, depends on the spatial dimension in the case oholds. In the long-time limit, i 7, Eq.(12) shows thaR(7)

s-FM model, withT(d=3)=3.9568[32]. For the other di- decays according tR(7)~7 92
mensions used, in the present paper, | filig(d=5) (2) In the so-called aging regime<dr~t,, one finds
=8.6482,T (d=7)=12.7982, and;(d=9)=16.8579. from Eq. (11
If t,, denotes the time elapsed after a quench fiioae
to T<T,, the following behavior is found foR(t+t,,,t,,) R(7+ty,ty) =N "Y477) 92 1<r~t,. (13

from Eqgs.(5), (9), and(10) in the limit of longt,,:
In this regime, the FDT is strongly violated. If, in addition,
>t,,, the response behaves Rért,)~ 7 ¥
; t>1 The overall behavior is shown for various values of the
waiting time in Fig. 1. From this plot, it is seen that for all
dimensions showngd=3,5,7, there is a crossover from the
e=d (s-FM); e=3 (s-SK). (11) 7 ¥?to ther ¥ behavior. Also the explicit dependence on
the waiting time in the aging regime is evident. It should be
From this expression, it is evident that the dynamic properpointed out that the crossover from the stationary regime to
ties of the s-SK model are very similar to those of the s-FMthe aging (domain growth regime takes place around
model in d=3. Therefore, the following expressions are ~t,,, independent of spatial dimension. Remember, that

w

—\ —€l4 H —
RO+t t) <A~ g(712) with A= =
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tFI’] tm
Ao(tg+ T):f dtlf dt,sin(Qtq)sin(Qt,)
0 0
ko]
3 [ t+1;
= XW(tg+t) W(tg+to)g| 7= —5— |,
wheret,,=Min(,t,). Using Eq.(14) the response function
Lttt — in O(h?) then is found to be given byrt>7'):
time

R*(t+ 7,t+7)=R(I+7t+7)+AR(t+ i+ 1),
FIG. 2. The field sequence for the nonresonant hole burning (16)
(NHB) experiment: A timet,, after a quench fronT=, one or
more cycles of a strong sinusoidal fidig(t) =h,sin(Q(t—t,)) are

applied. After a waiting time,,, the response to an infinitesimally R(f—l— o 2 W(“‘ ') ( T T’)
7, T)= ’

small field is monitored. W(i+7) 9 2
only in the stationary regime, the FDT holds. In particular, 5
the behavior of the respongend also the two-time correla- hg

AR+ ri+r) ==

A(t+7)?  A(t+7)?
tion function does not change qualitatively aroumd-4, W(i+ 7)2 _W(fJFT/)z

above which the model behaves like mean field concerning

the statics and the exponen{She same holds for the dy- XR(t+7,t+7).

namic fluctuations, as will be shown elsewhgre.

The above discussion shows that the relaxation is exin the NHB protocol of Fig. 2, however, the response to a
tremely nonexponential. Therefore, the question as to whamall step field is recorded, i.e., the integrated resp¢ihee
extent the response can be viewed as dynamic heterogenedhermoremanent magnetizatipn
naturally arises.

* t = t t = ! h t
B. Nonresonant hole burning X (6L =x(t )+ Ax(t7) fodSR’((H— mt+s)

In the following, the response will be calculated for the (17)
2':';0223 ff:rﬂ#irlfib tcr]:e I\:/\I/g.rkizrigpt\feg%ergirgygﬁ;nolrs aci:ording to Eq(16) yvith the zero-field integrated response
more cycles of the pump-field,(t) = h,sinQ(t—t,)] are ap- x(t,7)=JodsR(t+7,t+s). Equations(15—(17) allow the
plied after a timet, has elapsed. Following a waiting time calculation of the results of a NHB experiment at any desired

~ . temperature.
ty, the respons&®* (t+ 7,t+7') is measured, where | de- P

fined
[l. RESULTS AND DISCUSSION

t=tgttptty and t,=2N/0) Many of the general features of the modificatiby(t, 7)

can already be seen far=0, which is the simplest case.
for brevity. Here,N denotes the number of cycles of the Afterwards, finite temperatures will be discussed as well as
sinusoidal pump field. In the following calculations Bf, the dependence of the observed features on spatial dimen-
the W, (t) are needed in second order with respect to thesion. Finally, a direct comparison between the three-
pump-field amplitudéh,. From Eq.(7), it is evident that a  dimensional s-FM model and the s-SK model will be carried
perturbation expansion follows from out.

Throughout the remaining paper, the dependencewitt
be skipped when there is no confusion, i.e., the shorthand
notation y(7)= x(,7) and Ax(7)=Ax(t,7) will be used.
Times and frequencies will be given in dimensionless units.

Wi (6)2=W(t)?+hZA(t)?+O(hp). (14)

Inserting this expression into E¢7) yields Eq.(8) for the
zeroth-order term and, assuming a time-dependent field of A. Spherical ferromagnet

the formh(t) =hpsinQ(t—tg) ]t —t,) according to Fig. 2, In this section, the details of the results for calculations of

the response following the NHB field sequence are dis-
cussed. The discussion is kept general with regard to spatial
Atg+ T)ZZZTdeSA(tq‘f‘S)Zg(T_ $)+Ag(tgt 7), dimensior_u, but the actual calculations are carried outdfor_
0 =3, cf. Figs. 3—6. The dependence of the results on spatial
(15 dimension will be presented in the following subsection.
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FIG. 3. (8 The modification of the respons&éyx(), vs 7 for the s-FM,d=3. Upper panel{ =0.1; lower panel{)=10. The time after
the quench from infinite temperatutgis chosen as,= 0,10,16. (b) A xmaxsc= AxXmaxtg)/Axmaxdtq= 10°9) vst, for 2=0.01,0.1,10(c)
Ax(7) vs 7 for Q=0.1 andt,= 10° for N=1 (full line), N=5 (dashed ling andN= 10 (dotted lind. The curves foN=5 andN=10 are
hardly to distinguish(d) A xmaxsc=AXmaxX{N)/Axma{N=1) as a function of the number of cycles of the sinusoidal fisldt,= 10°).

1.T=0 Fig. 3@, whereAx(7) is plotted ford=3, T=0, t,=0,
=0.1,10, and several values gf. From this figure, two
features become evident immediately. First of all, it is seen
thatA y() is nonzero only in a limited time interval and the
time of the maximum modification depends on the burn fre-
quency(}, thus demonstrating dynamic heterogeneous be-
havior. Additionally, the curves fdr,=0 differ from the oth-

ers in that they change from positive to negative values in a
limited time range. This transient behavior also depends on
ef2. However, it is always possible to chodsggin a way that

the mentioned interplay between the two sources of transient
)jeatures can be neglected. Thus, it is interesting to consider
the asymptotic regime determined by

For T=0, Eqg.(15) can be solved trivially and the modi-
fied response is easily calculated. From B}, one explic-
itly has

W(t)2=g(t) andA(t)2=Ay(t); T=0. (18

The corresponding expressions fgfr) andA x(7) are eas-
ily obtained from Eqs(16) and (17).

From the discussion of the zero field response in the pr
ceding section, it is evident that the tirheelapsed after the
guench and before application of the pump field is a ver
important parameter. For smal}, some transient features
are expected due to the interplay of the approach of the aging
regime and the additional nonequilibrium features induced te>1 where t;=t4({).
by the application of the pump field. Of course, the cross-
over to af) independent behavior will depend crucially on The detailed dependence tgfon () has to be found empiri-
the pump frequency) as this determines the tintg of the  cally in the sense that no transient effects should show up in
imposed nonequilibrium situation. This is demonstrated inthe modified response for a given pump frequelty In
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order to further demonstrate the relative independence of thef A x(7) will be discussed. Before presenting the results of
results from the chosen value gf, in Fig. 3b) | have plot-  model calculations, it is instructive to investigate analytically
ted the value of the maximum modificationd xnax  the limiting behavior ofAy(ty+ 7) according to Eq.(19)
=Ax(Tmay Vstq for 2=0.01,0.1,10 in a scaled way. This which in turn determines the behavior afy(7). One finds
plot demonstrates the features mentioned above. For smahatA, vanishes in the limits of large and smé&llaccording
ty, there is some time interval in whichx(7) is negative to
and therefore the maximum is reduced. The small hump
aroundty~27/Q in the curves is roughly located at those
values oft, where the negative part also vanishes. Finally,
for long ty, a plateau is observed and the results are inde- .
pendent oft,. Obviously, the minimum value df, satisfy- Ag(t+7)~Q972 (Qtg<1), (20
ing the constraint thad x(7) is independent of, depends
on €. In the whole range of) considered in the present
paper, it turned out that a value d)gj=106 is sufficient.
Therefore, all further calculations are performed fior
=10° unless stated otherwisé. have checked via explicit
calculations thaty(ty+t,,7)— x(ty,7)=0 independent of
Q). Otherwise, the interpretation of th@ dependence of

Ax(t,7) in terms of dynamic heterogeneities would be
meaningless.From Eqs.(10) and(15), it is seen that in this

Q—0: Ag(t+7)~Q%2 (Qt>1),

Q—w: Ag(t+7)~Q 74 Vd,

demonstrating that the modification induced by the NHB
pulse sequence, in principle, depends@n The universal
Q% dependence for larg@ can easily be understood by
rewriting Eq.(15) in the form M=Qt,,)

regime, one has fody(tq+ 7) for arbitrary dimensiort, Ag(t +7)=Q‘ZfMdtlfMdtzsintlsintZW t o+ h
=Min(7,tp)] a 0 0 0
t ty+t
- xwwﬁg(r_u.
Ao(tq+7)=(8w)*d’2f dtlf dt,sin(Qt)sin(Qt,) Q 20
0 0

The behavior for larg&) is obtained via second-order ex-

- t+1t; pansions ofW(t,+Q~'x) and g(r—Q~'x). In a simple
9 2 1 19 calculation, one then finds the quot&d 4 behavior. There-
[(tq+t1)(tq+t2)]d’4 q fore, this represents a universal result which is validaoy

model obeying Eq(15). As the () dependence of\y(t,
+1) uniquely determines the one aﬁ(tq+t)2, this result
g_dditionally holds for all temperatures, including the disor-
dered paramagnetic phase.

This expression along with Eq416) for the modification of
the response also explains the observed relatively weak d

pendence of%/%((r) on tg. !n the lowest ordeAo(t+7") In Fig. 4a), the dependence afx(7) on Q is demon-
behaves ag, ™ and according to Eq9) the same holds for  girated in detail fod=3. Itis clearly seen thak y(7) shows
W(t+ 7). ThereforeRandAR are independent df, in this  a very pronounced) dependence fof)<0.1 which, how-
order and the same holds fary. An explicitt, dependence ever, diminishes with increasin@. Additionally, it is evi-
enters only in higher order. dent that the spectral modifications become “broader,” i.e.,
For T=0, the above expression is needed only fgr  are nonvanishing in a larger time interval, @sdecreases.
=t,=2N=/(, whereN denotes the number of cycles of the  In Fig. 4(b), | have plotted the time of the maximum
sinusoidal field. The reason for the fact that smaller values ofnodification, 7,4, VS (2. From this plot, one can see that
ty, are irrelevant in this case is that according to Et), 7., varies ad) ! for smallQ). This is the behavior typical
A(t)?=Aq(t) and that the response is measured only aftefor an extremely broad distribution of relaxation times. Ad-
the pump field is switched off. Therefore, the question as talitionally, 7,,,,x becomes independent 6f for O~ 10. Thus,
which extent the results depend on the number of cyclegor the s-FM model ird=3, the response is dynamic homo-
occurs naturally. Figure(8) showsA x(7) as a function ofr  geneous in the short-time regime, whereas it is dynamic het-
for N=1,5,10 for(0=0.1. The curves foN=5 andN=10  erogeneous for long times. Therefore, the aging dynamics in
are hardly distinguishable in this plot. The saturation of thethis model is dynamic heterogeneous. Also, it is seen from
maximum amplitude is demonstrated in Figd3 where  Fig. 4(b) that the behavior is independent of the tirhe
Axmax IS plotted vsN for 2=0.1 and 10 (q=106). ForN  elapsed after the quench.
values larger than roughly & x,.x becomeN independent. Another important question regards the time scale of the
In all of these calculations, one hgs>t,, whereas the op- “recovery” of the modification, i.e., the waiting time depen-
posite limit is met at smalt; as discussed above, although dence. In Ref[22], | have found that in a model of reorien-
for N=1. This demonstrates that the field sequence of NHRational dynamics there is no extra time scale for the recov-
is unable to drive the system much farther away from theery. However, in the experiments on the relaxor materials a
equilibrium than it is already due to the quenchat0. very long recovery time scale has been folihd]. In order
After the consideration of the influence of the parametergo investigate this question, in Fig(a | have plotted the
ty andN, now the more important issue of thedependence maximum modification(normalized to the value ét,=0)
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FIG. 4. (& Ax(7) vs 7 for t,=1C° t,=0, d=3, and log(2) Q
=1,0,-1,—2,—3,—4 (from left to righy). (b) Full line, 7,4 Vs Q,
dashed line§) 7,4 vs fortq=106; t,=0. Additionally shown as FIG. 5. (8 Ax(7Tmawnorm VS the scaled waiting timélt,, for
the dot-dashed line isy,, vs () for t;=1 andt,,=0, demonstrat- 0=10"41,5,10,25,50,10 (from left to righd. (b) Characteristic
ing that the behavior does not dependtgn decay time 7 of a Kohlrausch fit of the formAx(7manorm

o _ = exp{—(t,/n)?} (t;=10°). The stretching parameter is approxi-
AX(Tmaxnorm VS scaled waiting timelt,, for a variety of  mately constantg,=0.9. The dot-dashed line representg,y for
burn frequencie<). It is evident that the lifetime strongly ¢ -0 for comparison, cf. Fig. ®).

depends o) for small Q) and that this dependence dimin-
ishes for largeK). It has to be mentioned at this point that
the form of the modifications hardly changes for dlﬁerentnetic phase is independent of temperature. For the NHB field

waiting times. In order to have a simple measure for the
recovery times, | have fitted the curves of Figasto a sequence, however, EqLS) and (16) show thatAR and

Kohlrausch function exp-(t,,/7)?<}, and plotted the result- corre_spondmglyA)((r)_ do depend on temperature. The
ing time scalesk vs () in Fig. 5b). | included the time of physical reason for th's dependence IS quite clear. Though
the maximum modification fot, =0 [cf. Fig. 4b)] in this the thermal noise is wreley_ant for the Ilnear_ response, this
plot (dot-dashed line As the behavior of these two time changes u_nder NHB conditions due Fo the aligning effect of
scales is almost identical to within a factor of 2, the conclu-the pump_fleld. Here_, thermal fluctuations tend to counterbal-
sion to be drawn from these calculations is that there doednce the induced alignment.
not exist an extra time scale for the recovery in the s-FM In order to investigate the importance of this effect, Eq.
model. This appears plausible on intuitive grounds becaus€l) is solved numerically for finite temperatures fge>1,
the only time scale set by the pump is roughly %#2) in  i.e., using Eq(9) in the expression faAy(t). [To ensure that
the domain growth regime and just unift/(27)] in the  the physical solution of the equation is met, | first performed
short-time regime. This is qualitatively different from a com- calculations for very small, in which case Eq(15) can be
plex domain-structured system like the relaxor materialssolved in terms of an expansion iIWT..] The results of
where pinning effects play a dominant role. such temperature dependent calculations are shown in Fig.
6(a), whereA x(7) is plotted for varioud) and for tempera-
2.7>0 tures up to 0.5, usingtqzlo6 andt,,=0. Two features are
So far, | have considere@i=0 solely. As already men- evident by inspection of that plot. First, the position of the
tioned in the preceding section, the response in the ferromagraximum modification hardly changes as a function of tem-
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(a) the modification, but narrowing effects are absent. This
[T T T means that the nature of the dynamic heterogeneities are not
[ 0=0.01 PN ] affected by temperature effects. Therefore, in the following, |
2r A RN 1 will concentrate onT =0 for simplicity.

—_

B. Spherical-ferromagnet: NHB for varying dimension

In contrast to the s-SK model, the s-FM model offers the
opportunity to study the behavior of the observed dynamic
heterogeneities as a function of spatial dimension. As already
mentioned in Sec. Il, the fluctuation-dissipation raipovan-
ishes for the s-FM model independent of spatial dimension.
Additionally, it is known [27] that the usual static critical
exponents take on their mean-field values dor4, while
some dynamical exponents depend on dimension for an ar-
bitrary d. The only hint for a change in the dynamic proper-
ties of coarsening models fa>4 stems from the larg&l
model, where it has been shown that the aging contribution
to the integrated response changes qualitatively dord
[33]. The two-time quantities in the spherical models consid-
ered here, however, do not show any signature of a change in
T behavior aroundi=4. Therefore, in this section, the depen-
dence of the behavior oA x(7) and thus of the dynamic
(b) heterogeneities on spatial dimension will be investigated for
T T=0.
Figure 7a) shows a plot ofA x(7) vs 7 for d=5 (upper
pane) andd=7 (lower panel, which is to be compared to
Fig. 4@). (I do not consider even spatial dimensions, such as
d=6, because the calculations are much more involved for
technical reasonsiIn both cases, thé dependence is much
weaker than ird=3. Whereas there is some we@kdepen-
dence ford=5, such a dependence is hardly visible &br
] Y LN =7. To quantify this diminishindg) dependence, in Fig.([3)
0.0 0.1 1 | have plotted the time,,, of the maximum modification as
1-T/T a function ofQ). Whereas one has@ ! dependence in the

c long-time regime ford=3, this is weaker, roughi2 =2,

for d=5 and finally ind=7 andd=9 there is no visible)

FIG. 6. (@ Ax(r) vs temperature for T/T, . S
=0,0.1,0.2,0.3,0.4,0.5 for the burn frequencies given in the respe(:(jependence. This means that the dynamicd #7 andd

tive panels. The remaining parameters &ye 1, t,=0, andd .:9 IS dy.namlc_lf_lr(])mog?neouhm the.Shoét_tlme%ndth long- d
=3. (b) The value of the maximum modificatiod,x (74, VS 1 time regimes. us, also the aging dynamics becomes dy-

—T/T,. The other parameters are the same a&jin namic homogeneous for higher spatial dimension.
¢ The conclusion from these calculations is that the dynam-

ics of the s-FM model becomes dynamic homogeneous in the
. mean-field limit,d>1. However, as pointed out earlier, the
perature. It should be mentioned that also the shape of th@ean.field limit holds for alld>4 when concerned with
Ax(7) does not change as a function of temperature. Thigtatic properties. Fod=5, Fig. 7 reveals that the aging dy-
means that no effect of “motional narrowing” is observable. namics still is heterogeneous, although the shape of an effec-

The most prominent feature is the increasing intensity ofjve distribution of relaxation times is changed relativedto
Ax(7). In order to demonstrate this behavior in more detail,= 3

the intensity at the time of the maximum modification

AX(Tm@P‘) is_ shown as a function of repiuced temperature 1 C. NHB in the spherical Sherrington-Kirkpatrick model

—T/T. in Fig. 6(b) for 2=0.01,100. This plot demonstrates . ] ) ]

a scaling behavior of these quantities. The exponents, how- As already noted in the preceding section, the dynamic

ever, are different for various frequencies and do not seem tBehavior of the s-FM model id=3 and the s-SK model are

have an obvious explanation. It would be interesting to fur-very similar in the low-temperature phase. Concerning the

ther ana|yze the) dependence OAX(Tmax)y which, how- modified responSQ*(T), the same holds true, in particular,

ever, is beyond the scope of the present Study_ in the limit of |argetq . The Only difference stems from the
The conclusion to be drawn from these calculations is thatunctions g(t) occurring in the expressions fako(tq+ 7)

the effect of temperature is seen mainly in the amplitude oindR(t+ 7,t+ 7'), Eqgs.(16) and(19), for the two models.

103Ax(1:)
- nN w o

N W o

—

Q=100

021105-8



DYNAMIC HETEROGENEITIES IN THE OUT-OF. ..

(@)

0.12f
0.10 F
0.08 |
0.06 |
0.04 [
0.02 F
0.00 |

1 O4Ax(t)

0.05 |
0.04

0.03 |
0.02|
0.01 |
0.00 p===

(b)

LB ELLLL S NUR A LS B Ll B R AR B LI L R

FIG. 7. vs 71 for burn

(@
=1,10,20,50,100 fod=5 (upper panglandd=7 (lower pane).
The remaining parameters arg= 10° andt,,=0. (b) The time of
the maximum modification,,,for d=3, d=5, andd=7 vs(). In
the upper panelr,.x is shown and in the lower one, the product
QO 7max- Full lines are for‘rqzlo6 and the dot-dashed lines fog
=0.

Ax(7) frequencies ()

Plotting the two functionsggy(t) and gsk(t) reveals
that grm(t)=0sk(t/3) in a good approximation for
moderate t and asymptotically one hasgs(t)
=[(87)%(327) Y] gem(t) =12.58u(t), cf. Eq. (10).

PHYSICAL REVIEW E 68, 021105 (2003

For large(), small timesr are relevant and therefore one
expectsA ysk(7) =A xgm(7) to hold with the difference that
the maximum modification occurs af =37 " . On the
other hand, for smalf), long times are most important and
all functionsg(t) can be replaced by their asymptotic values.
Thus, one roughly had ysk(7)=[(87)%/(327)]A xem(7)
andK =7 M In Fig. 8a), | have plottedA x(7) for both
models for 0=10* (upper panél and Q=100 (lower
pane). Apart from a factor of 2 in the amplitude for the
larger frequency, the behavior just discussed is recovered.

Figure 8b) shows the time of the maximum maodification,
Tmax» VS frequency(). The full line is for the (three-
dimensional (3D) s-FM, cf. Fig. 4b), and the dashed line is
for the s-SK model. Also included ik ,/3) for Q>1 (dot-
dashed ling From the above discussion, it is clear that one
just finds the expected behavior: for very sm@llone has

SK =T, whereasroh, =374 holds for largeQ.

These considerations show that the qualitative behavior of
the s-FM model fod=3 and the s-SK model is extremely
similar in the low-temperature phase, including the dynamic
heterogeneities. The similarity between the 3D s-FM model
and the s-SK model is well known, and it has been argued
earlier that the s-SK model does not generically behave like
a spin glass, concerning both, the statics and the dynamics
[28].

The fact that there are dynamic heterogeneities observable
in the s-SK model might appear somewhat astonishing in
view of the fact that the s-SK model is a mean-field model.
However, this result is not unique. The first observation of
dynamic heterogeneous relaxation in a mean-field model was
reported in Ref[20]. Also the Monte Carlo simulations on
the Sherrington-Kirkpatrick model mentioned aboj4]
show dynamic heterogeneous behavior. The present results
therefore confirm the fact that an identification ebfnamic
and spatial heterogeneities is not possible in general.

IV. CONCLUSIONS

In the present paper, | presented calculations of the re-
sponse of simple spherical spin models to the field sequence
of the nonresonant hole burning experiment, a technique al-
lowing the detection of dynamic heterogeneities if they exist.
The calculations were restricted to the generic situation of
aging in the low-temperature phase. It was assumed that the
system is quenched from infinite temperatur§ toT .. at the
beginning, correlations in the initial conditions thus being
neglected completely. The equilibrium dynamics will be con-
sidered in a forthcoming publication.

The main result of the present paper is the fact that the
nonequilibrium dynamics of the s-FM model ih=3 is dy-
namic heterogeneous in the aging regime, whereas it appears
homogeneous in the short-time regime. In higher dimen-
sions,d=7, the response becomes dynamic homogeneous
also in the aging regime. Therefore, the nature of the aging
dynamics changes and in the mean-field lindg1, the
model displays homogeneous dynamics. This is what one
would expect as in this limit each spin interacts with an
infinite number of neighboring spins. However, for the s-SK
model, a simple mean-field spin glass model, a behavior very
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FIG. 8. (&) Ax(7) vs 7 for the three-dimensional s-FNfull
line) model and the s-SK moddbashed ling Upper panel:Q)
=10"* and the factors multiplying x(7) are N(SK)=327 and
N(FM)=(8m)3. Lower panel:Q)=10?. The remaining parameters
aretq=106 andt,=0. (b) The time of the maximum modification
Tmax fOr the 3d s-FM model[c.f. Fig. 4b), full line] and the s-SK
model (dashed lingvs ) for the same parameters as(®. Also

included is7X /3 (dot-dashed lingfor Q>1.

similar to that of the s-FM model inl=3 is found. This

PHYSICAL REVIEW E68, 021105 (2003

of dynamic heterogeneities in a short range spin glass is, of
course, to be expected and here also the spatial aspects of
these heterogeneities are of importance.

When considering the spherical two-spin interaction mod-
els, it is tempting to associate some disorder with the spheri-
cal constraint which forces the equal time correlation func-
tion to unity at all times. The lengths of the spins are not
static quantities and are random to some extent. This might
be viewed as a kind of dynamic disorder and the similarities
between the s-FM model id=3 and the s-SK model hint
towards the irrelevance of the quenched disorder in the latter
when concerned with dynamic quantities. On a speculative
level the fact that the dynamics in the s-FM model becomes
homogeneous fod>1 can be understood from the follow-
ing argument. Assuming the existence of an effective distri-
bution of relaxation rates at a given instant of time, i.e., for a
given distribution ofs;(t)?, the width of this distribution is
expected to decrease with an increasing number of nearest
neighbor interactions and consequently the dynamics be-
comes more homogeneous. This of course does not mean
that the response decays in an exponential way for ldrge
because the considered distribution is not a static quantity.
Note that this argument also implies that the lifetime of the
heterogeneities is finite. Unfortunately, NHB does not allow
us to determine this lifetime. It is, however, important to
point out that the argument concerning the increasing num-
ber of neighbors, though appealing with respect to the s-FM
model, has important drawbacks. Taking it serious in case of
the s-SK model would predict homogeneous dynamics in
contrast to what is observed.

Although the s-FM model is a typical model for phase-
ordering kinetics, there is no obvious relationship between
the observed dynamic heterogeneities and the domain size
distribution in a coarsening system. A possible way to inves-
tigate such a relationship could be to perform calculations on
the Ising model using spatially varying magnetic fields. It
would also be interesting to perform an analysis along the
lines of Refs.[34,35 in order to see whether the dynamic
heterogeneities in a coarsening system behave similar to
those observed in glassy systems. Furthermore, such calcu-
lations would allow us to investigate the dependence on spa-
tial dimension and therefore to check whether the one ob-
served in the present paper for the s-FM model also is found
for other domain-coarsening models.

In summary, | have shown that heterogeneous aging can
be observed in the low-temperature phase of the spherical
model of a ferromagnet. The aging dynamics becomes ho-
mogeneous on increase of the spatial dimension despite the
fact that no qualitative change in the two-time quantities
such as the correlation function or the response is observed.
Quenched disorder does not play any significant role with
respect to heterogeneities in spherical models.

explicitly demonstrates that the existence of dynamic hetero-

geneities does not tell us anything about spatial heterogene-
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